
Conntact

Tactile Assembly Framework

1

https://github.com/swri-robotics/ConnTact

Goals

2

Agile

Hardware-

Agnostic

Easy to set up, modify, and repurpose

Algorithms function without

modification on different computers

and robots

https://github.com/swri-robotics/ConnTact

Compliant Robotics

3

UR10e running Cartesian Compliance Controller
https://github.com/fzi-forschungszentrum-informatik/cartesian_controllers

https://github.com/swri-robotics/ConnTact

Overview

4
https://github.com/swri-robotics/ConnTact

Spiral Search Peg Insertion

5

https://rosindustrial.org/news/2021/10/14/introducing-the-conntact-assembly-framework

https://github.com/swri-robotics/ConnTact

class SpiralSearch(ConnTask):

def __init__(self, conntext, interface, connfig_name):

#Declare the official states list here. These will be passed into the machine.

states = [

START_STATE,

APPROACH_STATE,

FIND_HOLE_STATE,

INSERTING_PEG_STATE,

COMPLETION_STATE,

EXIT_STATE,

SAFETY_RETRACT_STATE

]

Define the valid transitions from/to each state. Here's where you define the topology of the state machine.

The Machine executes the first transition in this list which matches BOTH the trigger AND the CURRENT state.

If no other trigger is set at "self.next_trigger", Conntact will automatically fill in "RUN_LOOP_TRIGGER"

which runs the Execute method of the current Step object.

transitions = [

{'trigger':APPROACH_SURFACE_TRIGGER , 'source':START_STATE , 'dest':APPROACH_STATE },

{'trigger':STEP_COMPLETE_TRIGGER , 'source':APPROACH_STATE , 'dest':FIND_HOLE_STATE },

{'trigger':STEP_COMPLETE_TRIGGER , 'source':FIND_HOLE_STATE , 'dest':INSERTING_PEG_STATE },

{'trigger':STEP_COMPLETE_TRIGGER , 'source':INSERTING_PEG_STATE , 'dest':COMPLETION_STATE },

{'trigger':STEP_COMPLETE_TRIGGER , 'source':COMPLETION_STATE , 'dest':EXIT_STATE },

{'trigger':SAFETY_RETRACTION_TRIGGER , 'source':'*' , 'dest':SAFETY_RETRACT_STATE,

'unless':'is_already_retracting' },

{'trigger':STEP_COMPLETE_TRIGGER , 'source':SAFETY_RETRACT_STATE, 'dest':APPROACH_STATE },

{'trigger':RUN_LOOP_TRIGGER , 'source':'*' , 'dest':None, 'after':

'run_step_actions'}

]

self.step_list:dict = { APPROACH_STATE: (FindSurface, []),

FIND_HOLE_STATE: (SpiralToFindHole, []),

INSERTING_PEG_STATE: (FindSurfaceFullCompliant, []),

SAFETY_RETRACT_STATE: (SafetyRetraction, []),

COMPLETION_STATE: (ExitStep, [])

}

#Initialize the state machine "Machine" init in your Conntask instance

ConnTask.__init__(self, conntext, states, transitions, connfig_name=connfig_name)

SpiralSearch Code Solution:

State Machine

6

Declare
states

Declare the
transitions
between
states

Attach a
behavior to
each state

https://github.com/swri-robotics/ConnTact

SpiralSearch Code Solution:

State Behaviors

7

“Move down
until you bump
into something,
and record the
surface height”

“Move outward
in a spiral until
you drop past
the surface”

(Math to define
a spiral)

https://github.com/swri-robotics/ConnTact

SpiralSearch Code Solution:

ROS node

8

All Tasks needed
for this application

Instantiate Interface
and Conntext

Instantiate the
Conntask, passing in
Connfig, then run

https://github.com/swri-robotics/ConnTact

Conclusion

9

Example program summary:
• 230 lines of code
• 2 YAML files

https://github.com/swri-robotics/ConnTact

Upcoming goals:
• Full ROS 2 support
• More example applications

